

Quality Products and ServicesFrom the Quality Supplier

CAST IRON WELDING ALLOYS

Corporate Headquarters (Puyallup, Washington)
Telephone: 1-800-558-5825 or (253) 848-2230
Fax: (253) 841-0411 Fax: (253) 841-4862

Web Site: www.weldingwire.com • E-mail: wa-alloy@weldingwire.com

WAREHOUSE CENTERS and HEAD OFFICE

Charlotte, North Carolina: 888-522-8296 or 704-598-1325 fax: 704-598-6673 Stafford, Texas: 877-711-9274 or 281-313-6320 fax: 281-313-6332

Rancho Cucamonga, California: 800-830-9033 or 909-291-4580 fax: 909-291-4586

Dayton, Ohio Puyallup, Washington

CAST IRON ELECTRODES

WASHINGTON ALLOY NICKEL 99 AWS/SFA 5.15 ENI-CI, AC-DC

DESCRIPTION

Washington Alloy Nickel 99 is recommended for all-position welding of thin cast iron sections where maximum machinability is required. Since the core wire is approximately 99% nickel, weld deposits are basically "soft" and can be shaped, milled, drilled, or tapped, while the color will match that of cast iron. Washington Alloy Nickel 99 is specifically suited for repairing cracked or porous castings and to weld cast iron to itself or dissimilar metals such as low alloy and carbon steels.

APPLICATIONS

The weld deposits produced by Washington Alloy Nickel 99 have lower strength and ductility than those of 55% nickel cast iron electrodes. For this reason Washington Alloy Nickel 99 should only be used where maximum machinability of highly diluted weld metal is required or where weld stresses are not overly severe such as found in light and medium-sized castings. Common uses include thin plates, machinery parts, frames and housings.

TYPICAL WELD METAL CHEMISTRY (%)

C	0.55	S	0.007
Si	0.46	Fe	0.850
Mn	0.33	Cu	0.160
P	0.017	Ni	Balance

TYPICAL MECHANICAL PROPERTIES OF WELD METAL (as welded)

Tensile strength (psi)	50,000
Yield strength (psi)	40,000
Elongation in 2" (%)	3-4
Brinell hardness	170

SIZES AND RECOMMENDED CURRENT RANGES* (AC/DC)

Sizes	Amperage
3/32 (2.4 mm) x12"	30-70
1/8 (3.2 mm) x14"	70-110
5/32 (4.0 mm) x 14"	90-130
3/16 (4.8 mm x 14"	110-160
*These settings are for flat or downhand position overhead welding reduce 5-15 amps and for vereduce 10-20 amps.	

Packaging: 10 lb. tubes / 60 lb. master carton

WASHINGTON ALLOY NICKEL 55 AWS/SFA 5.15 ENIFe-Cl. AC-DC+

DESCRIPTION

Washington Alloy Nickel 55 is designed for all-position joining and surfacing of cast iron, malleable iron and ductile iron to itself or dissimilar metals such as mild steel, stainless steel, wrought alloys or high nickel alloys. A core wire chemistry of approximately 55% nickel and 45% iron produces weld deposits with much lower weld shrinkage stress which in turn reduces the possibility of weld or heat-affected zone cracking. Washington Alloy Nickel 55 produces high strength, ductile weld deposits even when welding low grade cast iron containing excessive levels of phosphorus or other contaminants.

APPLICATIONS

Washington Alloy Nickel 55 is especially suited for welding heavy sections such as motor blocks, housings, machine parts, frames, defective castings and building-up worn sections. Weld deposits are machinable and the deposit color will approximate that of cast iron.

TYPICAL WELD METAL CHEMISTRY (%)

C 0.058	S 0.024
Si 0.66	FeBalance
Mn 1.27	Cu 2.45
P 0.024	Ni55.03

TYPICAL MECHANICAL PROPERTIES OF WELD METAL (as welded)

Tensile strength (psi)	70,000
Yield strength (psi)	53,000
Elongation in 2" (%)	6-12
Brinell hardness	190

SIZES AND RECOMMENDED CURRENT RANGES* (AC/DC+)

Sizes	Amperage
3/32 (2.4 mm) x12"	50-80
1/8 (3.2 mm) x14"	80-120
5/32 (4.0 mm) x 14"	110-140
3/16 (4.8 mm x 14"	130-170
AThere We are one for the condense	bandana Wasa Faa

*These settings are for flat or downhand positions. For overhead welding reduce 5-15 amps and for vertical welding reduce 10-20 amps.

Packaging: 10 lb. tubes / 60 lb. master carton

UNS K01520 **Washington Alloy Est** Aws/sfa 5.15 est, AC-DC+

DESCRIPTION

Washington Alloy EST is a non-nickel, non-machinable cast iron electrode. It is the most economical way to go for repairing various kinds of cast iron products — providing that machinability of the weld deposit is not required and where weld shrinkage stress is not a concern. Since the core wire is steel, the weld deposits will have a higher tensile strength (65,000 psi) than Nickel 99, however a color match of the base metal should not be expected. Washington Alloy EST melts at relatively low temperatures which permit the use of low welding currents. This electrode may be used in any position utilizing AC or DC (reverse polarity)

APPLICATIONS

Commonly used on gears, motor housings, machine parts, farm equipment, large fames or any other cast iron part where appearance of the weld deposit is not important.

TYPICAL WELD METAL CHEMISTRY (%)

C 0.15	P 0.015
Si 0.55	S 0.003
Mn 0.37	Fe Balance

TYPICAL MECHANICAL PROPERTIES OF WELD METAL (as welded)

Tensile strength (psi)	65,000
Yield strength (psi)	50,000
Elongation in 2" (%)	33
Brinell hardness	350

SIZES AND RECOMMENDED CURRENT RANGES* (AC/DC+)

Sizes	Amperage
3/32 (2.4 mm) x12"	60-90
1/8 (3.2 mm) x14"	90-130
5/32 (4.0 mm) x 14"	120-160
3/16 (4.8 mm x 14"	150-200

*These settings are for flat or downhand positions. For overhead welding reduce 5-15 amps and for vertical welding reduce 10-20 amps.

Packaging: 10 lb. tubes / 60 lb. master carton

PROCEDURES FOR SMAW OF CAST IRON

Clean the work area. Preheating is not required, however it is useful in relieving stresses and to increase machinability of the weld deposit in parts greater than 1/2" thick. 200°F is an acceptable preheat temperature. Using AC or DC + (reverse polarity), hold the electrode 15° off vertical tilted toward the direction of travel. The arc length should be between 1/8" to 3/16". Use stringer beads or the weaving technique. Holding the arc over the molten deposited metal, follow the pool but do not allow the arc to lead or get ahead of the molten pool. If the part is less than 1/4" thick use a 1" bead, 1/4" to 1/2" use a 2" bead, over 1/2" use a 3" to 4" bead. Extinguish the electrode by whipping the arc back over the deposited metal. Peen the weld deposit with a blunt instrument to relieve stress and prevent the spread of cracks on the part. Re-strike the arc on the previously deposited weld metal. On thin or complex shaped parts use the skip weld technique. Always use an electrode diameter that is small enough to permit at least two passes. Note: If there is cracking of the part, make stopholes at both ends of the joint. Do not let the part become too hot during welding. Remove slag often. Gradual cooling of the weld metal is strongly recommended.

CAST IRON WIRES

UNS NO2215 CASCADE 17T & 17M AWS A5.15 Class ERNi-Cl

TIG/MIG

DESCRIPTION

High nickel alloy bare wire for TIG or MIG cast iron welding.

APPLICATIONS

Cascade 17T and 17M are the TIG (17T) or MIG (17M) equivalents to Cascade 17A. Developed primarily for automatic and semiautomatic welding of ductile, malleable or gray cast iron to itself or to dissimilar metals such as low alloy and carbon steel, stainless steel, iron, copper, Monel®, etc. Cascade 17T and 17M are excellent for the buildup of worn parts, repairing machining errors or defective castings where maximum machinability of the deposit is required.

FEATURES

Cascade 17T and 17M can be used in any position. Produces high quality welds with a minimal amount of effort. Weld deposits are strong, dense and fully machinable. Color will match that of cast iron.

SPECIFICATIONS

Si 0.440

Mn 0.240

Tensile strength (psi)	Up to 70,000
Yield strength (psi)	Up to 46,000
Brinell hardness	170
Elongation (%)	Approximately 12
Reduction of area (%)	Approximately 20
TYPICAL WIRE CHEMI	STRY (%)
C 0.037	Ni Balance

TIG/MIG

Fe 0.01

Cu 0.02

DESCRIPTION

CASCADE 18T & 18M

AWS A5.15 Class ENiFe-Cl

A premium quality 55% Nickel - 45% Iron bare wire for TIG or MIG welding of cast iron components to themselves or to steel.

APPLICATIONS

Cascade 18T and 18M are the TIG and MIG equivalents of Cascade 18A (coated electrodes). Developed for high deposition and greater welding efficiency using automatic or semi-automatic equipment. Cascade 18T/18M is excellent when doing large scale production welding of ductile (nodular) cast iron, malleable cast iron or gray cast iron to themselves or to carbon and low alloy steel. Preheating is generally not needed unless welding heavier and thicker castings. More common uses include the repair of thick and highly restrained weldments, worn or broken parts and for salvaging defective castings that require the higher tensile strength of steel, such as found in castings containing phosphorus levels greater than 0.20%.

FEATURES

Cascade 18T and 18M contain sufficient levels of carbon which promote the formation of graphite in the weld deposit, thereby reducing shrinkage stresses and in turn, reducing the possibility of heat-affected zone cracking. Weld deposits are machinable using normal methods, but can be made easier by stress relieving the part at approximately 1100°F.

SPECIFICATIONS

TYPICAL WIRE CHEMISTR	Y (%)
Elongation (%)	
Brinell hardness	
Yield strength (psi)	Up to 59,000
Tensile strength (psi)	

C0.005	Ni 54.85
Si 0.100	Fe Balance
Mn 0.690	Cu 0.020
P<0.002	Cr 0.030
S<0.001	Ti<0.10

PROCEDURES

metal is recommended.

PROCEDURES

Clean the joint area. Bevel heavy sections.

Preheating is not required, however it is useful in relieving stresses and to increase machinability of

the weld deposit in parts greater than 1/2" thick.

600°F is an acceptable preheat temperature. Use

DC- (straight polarity) in Tig applications, with the

oscillating technique and DC+ (reverse polarity) in

technique. The oscillating technique will produce

stringer bead technique, be sure to strike the arc

on the edge of previously deposited weld metal.

This will reduce dilution. Be sure to use flux. Do

not let the part become too hot during welding.

Remove slag often. Gradual cooling of the weld

the lowest weld metal dilution. When using the

MIG applications, with the stringer bead

Clean the work area. Preheating is not required, although it may be useful in relieving stresses and to increase the machinability of weld deposits in castings 1/2" or thicker. 600°F is an acceptable preheat temperature when welding gray cast iron, but 1100 to 1200°F may be needed for very thick sections or high hardness cast irons. Use DC- (straight polarity) in TIG applications with the oscillating technique and DC+ (reverse polarity) in MIG applications with the stringer bead technique. The oscillating technique will produce the lowest weld metal dilution. When using the stringer bead technique, be sure to strike the arc on the edge of previously deposited weld metal. This will reduce dilution. Be sure to use flux. Do not let the part become too hot during welding. Remove slag often. Gradual cooling of the weld metal is recommended.

AVAILABLE DIAMETERS

(in.)	.035	.045	1/16	3/32	1/8
(mm)	0.9	1.2	1.6	2.4	3.2

PACKAGING

10 lb. and 30 lb. spools — 0.35, 0.45, 1/16. 36" straight lengths - .035, .045, 1/16, 3/32, 1/8. (10 lb. tubes/50 lb. master carton)

GTAW Parameters: Use DC- (straight polarity) 100% Argon

GMAW Parameters: Use DC+ (reverse polarity) 100% Ar or 75Ar/25Co.

40-60 ft³/h. (1.1-1.7m³/h) Gas Flow:

Wire D	iameter	Shielding	Voltage, Amperage		Wire Feed		Travel Speed	
in	mm	Gas	V	Α	in/min	mm/min	in/min	mm/min
	1.6	100% Argon	26-31	240-350	150-225	3.8-5.7	10-25	250-640
0.062		75% Ar/25% CO ₂	26-30	235-320	150-225	3.8-5.7	10-25	250-640
		100%Argon	26-32	190-310	250-500	6.4-12.7	10-25	250-640
0.045	1.1	75% Ar/25% CO ₂	26-32	180-280	250-500	6.4-12.7	10-25	250-640
0.005	0.0	100% Argon	24-28	150-250	300-575	7.6-14.6	10-25	250-640
0.035	0.9	75% Ar/25% CO ₂	24-28	130-200	300-575	7.6-14.6	10-25	250-640

CAST IRON ELECTRODES

CAST IRON ROD

CASCADE 17A

Arc AC/DC All Positions

DESCRIPTION

Fully-machinable cast iron electrode for repair welding of thin sections.

APPLICATIONS

Cascade 17A is a high nickel electrode used for cladding, buildup and joining all grades of cast iron to itself or dissimilar metals such as low alloy and carbon steels, stainless steels, iron, copper, Monel®, etc. Excellent for repairing and "cold welding" cracked or porous thin sections where maximum machinability of the weld deposit is required. Common uses include engine blocks, machinery parts, frames, gears and pulleys.

FEATURES

Cascade 17A is an all-position electrode which produces porosity-free, non-cracking weld deposits that will match the color of cast iron. When properly used, the arc will penetrate through dirt and oil as well as over slag.

SPECIFICATIONS

Tensile strength (psi)	Up to 65,000
Yield strength (psi)	
Brinell hardness	Up to 218
Elongation (%)	3-6
Color match	. Excellent on cast iron

AVAILABLE SIZES AND AMPERAGE (AC/DC)

(in.) 3/32		1/8	5/32	3/16
(mm)	2.4	3.2	4.0	4.8
Amps	50-70	70-100	100-130	130-160

CASCADE 18A

Arc AC/DC+ (Reverse Polarity)
All Positions

DESCRIPTION

Premium cast iron electrode for heavy sections.

APPLICATIONS

Cascade 18A is for general maintenance welding of cast iron, malleable iron and ductile (nodular)iron to themselves or dissimilar metals such as wrought alloys or high nickel alloys. Commonly used on motor blocks, gear housings, machine parts and frames. Excellent for filling holes and building up missing or worn heavy sections. Cascade 18A is recommended for "meehanite" and "Ni-Resist" alloys.

FEATURES

Cascade 18A is an all-position electrode that produces machinable, high density and crack-resistant weld deposits. especially suited for welding dirty, oil-soaked castings of unknown composition.

SPECIFICATIONS

Tensile strength (psi)	Up to 84,000
Yield strength (psi)	Up to 63,000
Brinell hardness	Up to 218
Elongation (%)	6-18
Color match	

AVAILABLE SIZES AND AMPERAGE (AC/DC+)

(in.)	3/32	1/8	5/32	3/16
(mm)	2.4	3.2	4.0	4.8
Amps	50-70	70-100	100-130	130-160

RCI

AWS A5.15 RCI, UNS F10090, MIL-R-908A, Cl.2

DESCRIPTION

RCI is a high-quality gray iron oxyacetylene welding rod, designed for gas welding of cast iron, general fabrication or building up new or worn surfaces on castings.

APPLICATIONS

RCI is excellent for cast iron fabrication, repair of foundry defects, filling in or building up new or worn castings. RCI produces machinable weld deposits that have the same color, composition and granular structure as the base metal (gray iron). Properly made welds will be as strong as the original casting.

FEATURES

RCI has properly balanced and controlled levels of high silicon, low manganese and increased amounts of phosphorus and sulfur. This composition insures greater fusion and tensile strength of the weld deposit. Machinable weld deposits and color match to gray cast iron.

TYPICAL CHEMICAL ANALYSIS

C 3.20-3.50	P 0.50-0.75
Mn 0.60-0.75	S 0.10 Maximum
Si2.70-3.00	Fe Balance

TYPICAL MECHANICAL PROPERTIES OF THE WELD DEPOSIT

Tensile strength	(psi)	20,000 - 25	5,000 psi
Brinell hardness			150-210

AVAILABLE SIZES

3/16" (4.8mm) x 24" (600mm) Square 1/4" (6.4mm) x 24" (600mm) Square 5/16" (7.9mm) x 24" (600mm) Square 3/8" (9.5mm) x 24" (600mm) Square All 50 lb. bulk boxes

PROCEDURES

Although not required, preheating at 800°F - 1050°F will equalize the expansion and contraction strain as well as promote easy machinability of the weld deposit. For welding, use a neutral flame. Flux is recommended to cleanse the joint area. Puddle the molten metal with the flame to eliminate porosity. Back-track with the torch to relieve any strain on the weld deposit. Allow the part to cool slowly.

Copper-Base Welding Electrodes and Rods from AWS Specifications Suitable for Welding Cast Irons

Classification	Туре	Specification	Characteristics and Uses
Cas	t Filler Metals (OFW)		
RBCuZn-A	Naval Bronze	A5.27	Naval Bronze - yellow; tin adds strength, corrosion resistance.
RBCuZn-B	Nickel Bronze	A5.27	Nickel Bronze - yellow; tin and manganese add strength, hardness and corrosion resistance
RBCuZn-C	Low Furning Bronze	e A5.27	Low-Fuming Bronze - yellow; silicon inhibits oxidation (fuming) of zinc.
Cover	ed Electrodes (SMA)	W)	
ECuSn-A	Phosphor Bronze	A5.6	5 percent tin, hardens to 70-85 Brinell.
ECuSn-C	Copper-Tin	A5.6	8 percent tin, hardens to 85-100 Brinell.
ECuAl-A2	Copper-Aluminum	A5.6	Copper-aluminum electrodes deposit high strength, ductile weld metal; use for welding high-strength castings, surfacing

Washington Alloy Company believes that the information and data contained in this catalog is correct. However, all technical information, data and applications are provided to assist you in making your own evaluations and decisions and should not be mistaken as expressed or implied warranties. Chemical and mechanical properties are typical or average values that have been obtained by testing and comparing many heats of the same material. Minimum or maximum values are noted accordingly and are not intended for specification purposes. Washington Alloy assumes no liability for results or damages incurred from the use of any information contained herein, in whole or in part.